Aide aux devoirs de maths



 
AccueilAccueil  PortailPortail  FAQFAQ  RechercherRechercher  S'enregistrerS'enregistrer  MembresMembres  GroupesGroupes  Connexion  

Partagez | 
 

 dm de maths urgent!merci de m'aider sa seré simpa...

Aller en bas 
AuteurMessage
jordan



Nombre de messages : 6
Date d'inscription : 01/11/2006

MessageSujet: dm de maths urgent!merci de m'aider sa seré simpa...   Mer 1 Nov - 22:37

les dieses(#)correspondent aux signes multipliés
les (V)correspondent aux racines carrés
les (x) correspondent aux x

1)A=(2x+1)²-(4x+2)(-x-1)
a)développer,réduire et ordonner
b)factoriser
c)calcule A pour x=-V2 et x=V3-1

2)exprimer sous la forme aVb,b entier positif
B=5V300-2V12+V363

3)Marie dit que 9-4V5 et 9+4V5 sont inverses l'un de l'autre.Tatiana n'est pas d'accord.Qui a raison?Justifier votre réponse.

4)C=(3+V5)²
a)développer cette expression
b)factoriser 14+6V5
c)calculer V14+6V5#V14-6V5,(la barre du haut de la racine qui ni est pas de 14 se prolonge jusqu'au 5 aux deux racines de 14)
d)calculer V14+6V5+V14-6V5,(la barre du haut de la racine de 14 qui ni est pas se prolonge jusqu'au 5 aux deux racines de 14)
____________________________
_______________________
_________________
____________
________
____
_
5) V43+V31+V21+V13+V7+V3+V1
les traits en haut correspondent a la barre des racines qui se prolonge,donc,la barre de la racine de 43 se prolonge jusqu'a 1,la barre de la racine de 31 se prolonge jusqu'a 1,etc.....je peux faire que comme sa ,j'éspère que vous comprendrez.Merci.
Revenir en haut Aller en bas
Voir le profil de l'utilisateur
Admin
Admin
avatar

Nombre de messages : 254
Localisation : La Seyne sur mer
Date d'inscription : 22/01/2006

MessageSujet: Re: dm de maths urgent!merci de m'aider sa seré simpa...   Mer 1 Nov - 23:49

cheers Bonsoir Jordan,
1)a)
Développer c'est appliquer la formule :
(a+b)(c+d)=ac+ad+bc+bd (on distribue)
Ici tu as (2x+1)(2x+1)-(4x+2)(-x-1)
D'où : (4x²+2x+2x+1)-(-4x²-4x-2x-2) A noter que pour (2x+1)² on peut utiliser une identité remarquable.
Ensuite on enlève les () :
4x²+2x+2x+1+4x²+4x+2x+2 voilà pour le développement.
Réduire c'est rassembler tout ce qui est de la même "espèce" : les x² ensemble, les x ensemble ...etc en fait il suffit de les compter
D'où 8x²+10x+3
pour ordonner, on commence par les x², puis les x etc... ici c'est déjà fait.
Donc A=8x²+10x+3
1)b)
Là il faut que tu trouve un facteur commun aux deux côtés du signe - (le 1er). A première vu il n'y en a pas. Comme on ne peut rien fare avec ce qu'il y a à gauche du signe -, on va regarder ce qu'on peux faire à droite.
On s'aperçoit que 4x+2=2(2x+1)
Donc A peut s'écrire (2x+1)(2x+1)-2(2x+1)(-x-1)
Et là, au miracle, on a (2x+1) de chaque côté!!!...
On peut donc le mettre en facteur :
(2x+1) facteur de ce qui reste quand on l'enlève dans ce qu'on a :
(2x+1)[(2x+1)-2(-x-1)]
La factorisation est faite il ne reste plus qu'à faire le ménage dans les crochets :
A=(2x+1)(2x+1+2x+2)=(2x+1)(4x+3)
1)c)
Tu dois remplacer x par -V2 et par V3-1 à savoir que (-V2)²=2 et (V3-1)²=3-2V3+1 (identité remarquable)
Tu vas trouver : 19-10V2 et -3+8V3

2)
Il te faut décomposer ce qu'il y a "sous la racine" (on doit dire sous le radical) pour repérer des carrés pour pouvoir les "sortir"
300=2x150=2x2x75=2x2x3x25=2x2x3x5x5=2²x3x5² on peut donc "sortir" 2 et 5
V300=2x5xV3=10V3
Je te laisse faire pareil avec les deux autres racines ensuite tu les compte et tu dois trouver: 17V3

3)
L'iverse de 9-4V5 est : 1/(9-4V5)
Si on multiplie en haut et en bas par 9+4V5 et qu'on repère une identité remarquable au rez de chaussée (dénominateur)...c'est gagné!!!...
Marie a donc raison.

4)a)
Si tu as compris le 1)a) pas de p
4)b) il faut trouver un facteur commun à chaque côté du +
4)c)rac(ab)=rac(a)xrac(b)
Donc ici, rac(14+6V5)xrac(14-6V5)=rac[(14+6V5)(14-6V5)] et maintennt on a sous le radical : (a+b)(a-b), donc...
Tu vas trouver 4
4)d)
Si c'est bien écrit (avec le + entre les deux racines) on ne peut rien faire???...
5)
Calcule en partant de la droite V1=1 puis rac(3+1)=2 etc... c'est rigolo!!!...
Tu vas trouver 7.

Bon courage et à bientôt sur abilobac.fr

_________________
Un prof pour vous servir rien que pour le plaisir!!!...
Revenir en haut Aller en bas
Voir le profil de l'utilisateur http://www.accrodemaths.com
jordan



Nombre de messages : 6
Date d'inscription : 01/11/2006

MessageSujet: remerciement   Jeu 2 Nov - 12:16

je voulais juste vous remerciez de m'avoir aidé,c'est vrément sympa de vote part.
Revenir en haut Aller en bas
Voir le profil de l'utilisateur
Contenu sponsorisé




MessageSujet: Re: dm de maths urgent!merci de m'aider sa seré simpa...   

Revenir en haut Aller en bas
 
dm de maths urgent!merci de m'aider sa seré simpa...
Revenir en haut 
Page 1 sur 1
 Sujets similaires
-
» URGENT: Un travail à corriger ! Merci de m'aider !
» Merci mon amour
» Box plot et individus extrêmes sous SPSS, très urgent Merci
» Poules de réformes à adopter, mars 2011 URGENT ! merci
» Urgent!Merci!

Permission de ce forum:Vous ne pouvez pas répondre aux sujets dans ce forum
Aide aux devoirs de maths :: Collège-
Sauter vers: